

DAILY PRACTICE PROBLEMS

DPP No. 36

Total Marks : 56

Max. Time : 59 min.

Type of Questions						, Min			
Singl Multi Subje Matcl	le choice Objective ple choice objectiv ective Questions (r h the Following (e (no negative marking ve (no negative markin no negative marking) (no negative marking)	y) Q. 1,2,3,4,5,6 (3 m ng) Q.7, 8 (5 m Q. 9,10,11,12,14 (4 m Q.13 (8 m	arks, 3 min.) arks, 4 min.) arks, 5 min.) arks, 8 min.)	[18, [10, [20, [8,	18] 8] 25] 8]			
1.	The number of com (A) 1	plex numbers z such that (B) 2	z – 1 = z + 1 = z – i (C) ∞	equals (D) 0					
2	If a and 0 are the r	a_{a}	$1 - 0$ then $x^{2009} + 0^{21}$	D09 —					
Ζ.	(A) -1	(B) 1	(C) 2	(D) –2					
3.	If ω be an imaginary cube root of unity, then the number : $(1 - \omega - \omega^2)^3 + (\omega - 1 - \omega^2)^3 + (\omega^2 - \omega - 1)^3$ is:								
	(A) divisible by 3 b (C) divisible by bot	ut not by 8 h 3 & 8	(B) divisible by 8 but not by 3 (D) none of these						
4.	If the imaginary part of the expression $\frac{z-1}{e^{i\theta}} + \frac{e^{i\theta}}{z-1}$ be zero, then the locus of z is								
	 (A) a straight line parallel to x-axis (B) a parabola (C) a circle of radius 1 (D) a straight line passing th 				1, 0)				
5.	The reflection of the	The reflection of the complex number $(2 - i)$ in the straight line iz = $\overline{7}$ is							
	(A) 4 – 3i	(B) 3 + 4i	(C) 2 + i	(D) 1 – 2i					
6.	If z_1, z_2, z_3, z_4 are in	maginary 5 th roots of unit	ty, then the value of $\sum_{r=1}^{16}$	$\left(z_{1}^{r}+z_{2}^{r}+z_{3}^{r}+z_{4}^{r}\right)_{r}$	S				
	(A) 0	(B) –1	(C) 20	(D) 19					
7.	If z_1 and z_2 are two	complex numbers satisfyi	ng the equation						
	$\left \frac{z_1 + z_2}{z_1 - z_2}\right = 1$ then z_1/z_2 is a number which is								
	(A) positive real	(B) negative real	(C) imaginary	(D) purely imag	inary				
8.	The complex number z satisfying $ z + \overline{z} + z - \overline{z} = 2$ and $ z - 1 + z - i = 2$ is/are								

Get More Learning Materials Here : 📕

Regional www.studentbro.in

9. Compute the product,
$$\left[1 + \left(\frac{1+i}{2}\right)\right] \left[1 + \left(\frac{1+i}{2}\right)^2\right] \left[1 + \left(\frac{1+i}{2}\right)^{2^2}\right] \dots \left[1 + \left(\frac{1+i}{2}\right)^{2^n}\right]$$
 where $n \ge 2$

Let A and B be two complex numbers such that $\frac{A}{B} + \frac{B}{A} = 1$, then prove that the origin and the two points 10. represented by A and B form vertices of an equilateral triangle.

- Find the equation of line joining the points (1 + i) and 2 i in complex plane. 11.
- Let $z_1 = 10 + 6i$ and $z_2 = 4 + 2i$ be two complex nubmers and z be a complex number such that 12.

$$\arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$$
. Find the centre and radius of the locus of complex number z.

13.	Match the column :							
	Colun	Column- I						
	(A)	If $\omega_{_1},\omega_{_2}$ be imaginary cube roots of unity, then $\omega_{_1}{}^4$ + $\omega_{_2}{}^4$ is equal to	(p)	$-\frac{1}{\omega_1\omega_2}$				
	(B)	If $\omega \neq 1$ be nth roots of unity, then $\omega + \omega^2 + \omega^3 + \dots + \omega^{n-1}$ is equal to	(q)	–1				
	(C)	If z_1 and z_2 be two nth roots of unity, then $arg\left(\frac{z_1}{z_2}\right)$ is a multiple of	(r)	$\frac{2\pi}{n}$				
	(D)	If $\omega \neq 1$ be nth roots of unity, then value of $(1 - \omega) (1 - \omega^2)$ $(1 - \omega^{n-1})$ is equal to	(s)	n				

14. Draw the locus of z :

- arg (z 1 + i) \le $\frac{\pi}{3}$ (i)
- (ii) |z + 1 i| = |z 2|
- (iii) $|z| \le 1 \text{ and } -\frac{\pi}{4} \le \arg(z) \le \frac{\pi}{4}$

(iv)
$$\arg\left(\frac{z+i}{z-i}\right) = \frac{2\pi}{3}$$

Get More Learning Materials Here : 📕

Answers Key

1.	(A)	2.	(B)	3.	(C)	4.	(C)
5.	(D)	6.	(B)	7.	(C)(D)		
8.	(A)(B)(C)(C))	9.	$\left(1-\frac{1}{2^2}\right)$	\overline{n}	(1 + i)
11.	z (1+2i) —	z (1–2i)	– 6i	= 0		
12.	centre:	9 +	i, radius	s = ,	√ <u>26</u>		
13.	$(A) \to ($	p,q)	, (B) →	(p,q)), (C) \rightarrow	(r),	$(D) \to (s)$

Get More Learning Materials Here : 💶

